ADUBAÇAO FOLIAR NA CULTURA DO CAPIM ELEFANTE BRS CAPIAÇU

AUTORES

Murillo Henrique Silva AGUIAR

Discente da União das Faculdades dos Grandes Lagos - UNILAGO

Eusebio Osvaldo PERSEGIL; Gabriela Christal CATALANI; Giovana Carolina Dourado CRUCIOL

Docentes da União das Faculdades dos Grandes Lagos - UNILAGO

RESUMO

A cultivar do capim elefante BRS Capiaçu é uma alternativa para suplementação alimentar animal na época da seca, a silagem do BRS Capiaçu obtém uma maior produtividade de matéria seca com um baixo custo em relação ao milho e a cana-de-açúcar. O objetivo do experimento foi avaliar o desenvolvimento de produção de matéria seca do capim BRS Capiaçu sob diferentes doses de fertilizante nitrogenado foliar em cobertura. O experimento foi realizado em blocos casualizados, com quatro tratamentos de (diferentes doses Nutriliquid Mais Premium) e quatro repetições, sendo eles T1-testemunha; T2- 1,5 L/ha; T3- 3,0 L/ha; T4- 4,5 L/ha. O experimento foi implantado no dia 25 de março de 2022, e aos 144 dias após plantio realizou as seguintes avaliações: número de perfilhos por (m), diâmetro do colmo (mm), altura de planta (m), comprimento de folha (m), largura das folhas (cm), número de folhas, relação folha/colmo (m), em seguida essas plantas foram pesadas para calcular a produção de massa de matéria verde (kg). A ocorrência de extremos climáticos de temperatura influenciou a condução e, consequentemente, pode ter influenciado os resultados das variáveis analisadas. A aplicação do fertilizante foliar não alterou as variáveis analisadas para a forrageira BRS Capiaçu.

PALAVRAS - CHAVE

Pennisetum purpureum. Nutrição de plantas. Fertilizante Foliar. Matéria Verde.

1. INTRODUÇÃO

O capiaçu (*Pennisetum purpureum* cv. BRS Capiaçu) foi desenvolvido pelo projeto de melhoramento genético do capim-elefante realizado pela Embrapa Gado de Leite. Várias cultivares do capim elefante foram obtidas através de cruzamentos pertencentes a Bancos de Genes Ativos de Germoplasma – BAGCE. As melhores progênies foram replicadas e analisadas em testes comparativos de linhagens clonais. Alguns clones foram escolhidos e analisados pela Rede Nacional de Ensaios de Capim Elefante – RENACE foram dirigidos em 17 estados brasileiros entre o intervalo de 1999 a 2008. O clone CNPGL92-79-2, adquirido entre o cruzamento os acessos Guaco IZ2 (BAGCE 60) e Roxo (BAGCE 57), se adaptou em vários locais, sendo obrigado ao teste de Valor de Cultivo e Uso – VCU de 2009 a 2011. Deste clone, surgiu a cultivar BRS Capiaçu e foi protocolado como Cultivar no Ministério da Agricultura, Pecuária e Abastecimento (MAPA) sob nº 33503 em 08/01/2015, e obteve certificação de proteção de cultivares nº 20150124, em 23/01/2015 (EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA – EMBRAPA, 2022).

A cultivar BRS Capiaçu é de porte elevado (até 4,20 m de altura), crescimento cespitoso (touceira ereta), diâmetro do colmo espesso (1,6 cm), com média densidade de perfilhos basais (30 perfilhos/m²), possuem folhas largas e verdes, bainha de folhas verdes amareladas, não possuem joçal (pelos), nervura central branca e é resistente ao tombamento (ANTUNES et al., 2021; PEREIRA, et al., 2016).

A biomassa da BRS Capiaçu tem uma alta capacidade, ultrapassando a do milho e o da cana de açúcar alcançando em média de 50 t/ha/ano de matéria seca. Com resistência em suportar tolerância ao estresse hídrico, tornando a possibilidade ao cultivo do milho em áreas com elevado risco de eventualidades de veranicos. Podem ser cultivadas em locais de clima tropical, esta variedade tem condições de solo elevadas e deve ser cultivada em solos profundos, bem drenados e férteis (PEREIRA, et al.,2016).

As condições climáticas atualmente no Brasil são definidas em dois períodos diferentes, período das águas e período de estiagem, através desses períodos é determinada a qualidade e disponibilidade de forragem. O clima com alta umidade e calor se dá no período das águas favorecendo a produção de forragem e aumentando seu valor nutricional, já na estação da seca ocorre o inverso. Para reduzir os efeitos que a seca causa, o excedente de forragem produzido nas águas deve ser armazenado corretamente como é realizada a ensilagem (PAULA et al., 2020).

Em geral, as gramíneas tropicais são caracterizadas por baixo teor de matéria seca e carboidratos solúveis na idade em que a forragem atinge seu valor nutricional ideal. A silagem de biomassa com alto teor de umidade pode prejudicar o processo de fermentação na silagem e aumentar as perdas pelo excesso de umidade (BERNARDES; SCHMIDT; DANIEL, 2015).

Para que não haja complicações futuras, é necessário a colheita da planta madura, pretendendo melhores resultados com a produção de volumoso, valor nutritivo, teor de matéria seca. Aconselha-se o corte da BRS Capiaçu para produção de ensilagem, alcançando uma altura média de 3,5-4,0 m, isso ocorre perto de um tempo de rebrota de 90-110 dias, realizando a colheita na fase ideal obtém melhor resultado de silagem e composição química. No entanto a ensilagem deve ser realizada antes de 120 dias de rebrota, para que não prejudique o valor nutricional da silagem (PEREIRA, et al., 2016).

Para ter uma redução de umidade do material pré-ensilado, é necessário um bom manejo, como a técnica de pré secagem do material, fornecendo melhorias na qualidade da silagem. A pré secagem do material é a conservação da silagem previamente desidratada, realizando a fermentação anaeróbica, onde carboidratos solúveis se transformam em ácidos orgânicos pela atividade dos microrganismos, que estando em ambiente

recomendado, se multiplicam conservando adequadamente o material armazenado, e preservando seu valor nutritivo (WEISSHEIMER et al., 2018).

O capim elefante BRS Capiaçu, por produzir uma grande quantidade de biomassa, é uma planta exigente em nutrientes, a absorção de nutrientes do solo é correspondente a produção de biomassa. A adubação nitrogenada, a realização de adubação nitrogenada vai interferir diretamente na estrutura da planta, proporcionando seu rápido crescimento, maior volume de perfilho e acrescentando massa seca na lâmina foliar. Com isso, plantas que tem disposição de nitrogênio apresentará maior produtividade de matéria seca da parte aérea da planta, obtendo um melhor resultado e desempenho animal (SILVA et al., 2013).

A adubação da cultura do BRS Capiaçu deve ser realizada de acordo com análise de solo. Em muitos solos tropicais, as principais deficiências são referentes a acidez e aos baixos teores de fósforo. A recomendação para o plantio é com adubação fosfatada, aplicada no fundo dos sulcos. Em muitos solos é necessário de 120 kg/ha de fósforo P2O5, correspondendo a quantidade de 600 kg/ha de superfosfato simples. A realização de fornecimento de potássio será quando o teor deste elemento no solo for inferior a 50 ppm, com dose de 80 a 100 kg/ha de KCL (PEREIRA et al., 2016).

Segundo Lima (2017), os nutrientes essenciais retirados do solo na cultura do BRS Capiaçu são os macronutrientes: Nitrogênio (N), Potássio (K), Fósforo (P), os macronutrientes secundários Cálcio (Ca), Magnésio (Mg) e Enxofre (S), e em seguida os micronutrientes (Fe, Mn, Zn, Cu, B, Cl e Mo).

Em função do corte o capim elefante chega a extrair do solo entre 330 e 563 kg ha⁻¹ de N; 31 e 76 kg ha⁻¹ de P; 422 e 1.590 kg ha⁻¹ de K; 20 e 253 kg ha⁻¹ de Ca; 45 e 50 kg ha⁻¹ de Mg; 14 e 151 kg ha⁻¹ de S; 432 e 991 g ha⁻¹ de Fe; 98 e 407 g ha⁻¹ de Zn; 21 e 58 g ha⁻¹ de Cu; e 130 e 299 g ha⁻¹ de Mn (MORAIS, 2021).

1.1 OBJETIVO

O objetivo do experimento foi avaliar o desenvolvimento e produção de matéria verde do capim elefante cultivar BRS capiaçu sob diferentes doses de fertilizante foliar em cobertura.

2. MATERIAL E MÉTODOS

O experimento foi realizado de 25 de março a 16 de outubro de 2022 na Estância Reino Encantado, no município de Mirassolândia/SP, nas coordenadas geográficas 20°35'35.3" S e 49°31'47.2" W, em uma área total de 399 m² (Figura 1), com temperatura média anual de 23,4 °C e pluviosidade média anual é de 1465 mm. Segundo OLIVEIRA et al. (1999), o solo da região é classificado como Argissolo Vermelho-Amarelo.

Figura 1 – Localização do experimento na propriedade Estância Reino Encantado, Mirassolândia/SP.

Fonte: Google Earth (2022).

Após a demarcação da área experimental realizou a coleta de solo para sua análise química do mesmo. Para isso, foram coletadas 15 subamostras de solo, essas foram homogeneizadas formando uma única amostra e essa enviada ao laboratório apresentando os resultados contidos na Tabela 1.

Tabela 1 – Características Química do solo da área experimental.

Macronutrientes	Resultados	Unidade
M.O.	13,6	g/dm³
pH (CaCl ₂)	4,61	mg/dm³
P (Resina)	0,9	mg/dm³
K	0,90	mmolc/dm³
Ca	12,0	mmolc/dm³
Mg	7,0	mmolc/dm³
S-SO ₄	6,0	mg/dm³
S.B.	19,9	mmolc/dm³
H+AL	21,0	mmolc/dm³
C.T.C	40,9	mmolc/dm³
V	49	%
Micronutrientes	Resultados	Unidade
В	0,35	mg/dm³
Cu	1,79	mg/dm³
Fe	19,4	mg/dm³
Mn	1,2	mg/dm³
Zn	2,3	mg/dm³
Fonte: Ciência em Solo (2022).		

Para o preparo do solo foi utilizado um arado visando a descompactação do mesmo na profundidade de 30 cm. Posteriormente, de acordo com o resultado da análise do solo realizou a calagem com cal virgem PRNT 95%, na dose de 1 t/ha (RAIJ et al., 1997). Em seguida, foi realizada a incorporação com uma gradagem pesada, e para nivelar o solo utilizou uma grade niveladora e um sulcador para abertura do sulco de plantio.

Após o preparo do solo, o plantio foi realizado no dia 25 de maio de 2022, e no mesmo dia fez a adubação de plantio com fertilizante químico (N) Nitrogênio, (P) Fósforo, (K) Potássio 8-28-16 na dose recomendada de 400 kg/ha (RAIJ et al., 1997). As mudas de Capiaçu foram plantadas a uma profundidade de 20 cm, e o experimento foi irrigado por aspersão, em cada parcela foram estabelecidas, em média, 8 colmos por metro linear e cada colmo com duas gemas, o espaçamento entre linhas foi de 1 metro (Figura 2 e 3).

Tabela 2 – Concentrações de nutrientes do adubo Nutrimais Premium.

Parâmetro	Concentrações	
Nitrogênio (N)	12% (156g/L)	
Fosforo (P)	4% (52g/L)	
Potássio (K)	6% (78g/L)	
Magnésio (Mg2)	0,5% (6,5g/L)	
Zinco (Zn)	2% (26g/L)	
Manganês (Mn)	1% (13g/L)	
Algas Marinhas		
Ácidos Húmicos e Fúlvicos		

Fonte: Agroserv

O delineamento experimental foi de blocos casualizados, com 4 tratamentos e 4 repetições, (Figura 2 e 3), a dose recomendada pelo fabricante para a cultivar do capim elefante BRS Capiaçu é 2 L/ha, segue as descrições de cada tratamento:

T1 (testemunha)- sem aplicação de Nutriliquid Mais Premium;

T2- 2,0 L/ha da dose de Nutriliquid Mais Premium;


T3- 3,0 L/ha da dose de Nutriliquid Mais Premium;

T4- 4,5 L/ha da dose de Nutriliquid Mais Premium.

Figura 2 – Espaçamento entre linhas utilizado no cultivo do capim Capiaçu.

Figura 3 – Quantidade de colmos utilizados no cultivo do capim Capiaçu.

Fonte: Aguiar (2022)

Os tratamentos foram aplicados em cobertura aos 64 dias após o plantio (DAP), no dia 28 de julho de 2022, sendo dispostos em campo conforme a figura 4.

Figura 4 – Disposição dos tratamentos na área experimental.

Bloco1	Bloco2	Bloco3	Bloco4
T4 R3	T2 R1	T3 R1	T4 R1
T2 R4	T1 R2	T4 R2	T3 R3
T3 R2	T4 R4	T1 R4	T1R3
T1 R1	T3 R4	T2 R2	T2 R3

Para a avaliação de número de perfilho por metro (Figura 5) foram selecionadas as duas fileiras centrais e avaliou um metro do meio da fileira de cada, posteriormente, foram coletadas nove plantas dessas duas fileiras centrais sendo três plantas pequenas, três médias e três grandes, totalizando nove plantas de cada parcela.

para avaliar o diâmetro do colmo (mm), (Figura 6), altura de planta (m), (Figura 7), comprimento de folha (m), largura das folhas (cm) (Figura 8), número de folhas, relação colmo/folha (m); em seguida essas plantas

foram pesadas para calcular a produção de massa de matéria verde (kg), (Figura 9). Essas avaliações foram realizadas aos 144 dias após o plantio, em 16 de outubro de 2022.

Figura 5 – Avaliação de contagem de perfilho por metro linear.

Fonte: Aguiar (2022)

Figura 6 – Avaliação de diâmetro de colmo com auxílio de paquímetro digital.

Figura 7 – Avaliação de altura de planta com auxílio de uma trena.

Fonte: Aguiar (2022)

Figura 8 – Avaliação de largura de folha com auxílio de escalímetro.

Figura 9 – Peso para avaliação de massa de matéria verde.

Fonte: Aguiar (2022)

2.1 ANÁLISE ESTATÍSTICA

Os dados foram submetidos à análise de variância pelo teste F a 5% de probabilidade e análise de regressão pelo software SISVAR (FERREIRA, 2011).

3. RESULTADOS E DISCUSSÃO

A avaliação de diâmetro do colmo, altura de planta e comprimento de folha de plantas de Capiaçu, analisadas pelo teste F e pela regressão em funções de doses crescente do fertilizante foliar podem ser verificadas na Tabela 3. As variáveis não apresentaram diferença estatística com as doses crescentes do fertilizante foliar.

Tabela 3 – Valores de p>F e teste de comparação de médias para diâmetro do colmo, altura de planta e comprimento de folha aos 144 DAP em BRS Capiaçu em função de doses crescentes de fertilizante foliar.

Teste F	Diâmetro do colmo (mm)	Altura de planta (m)	Comprimento de folha (m)
	p>F		
Doses (L)	0,67	0.56	0.69
C.V. %	11.64	9.63	3.52
Testemunha	14.83	2.62	1.30
2,0 L/ha	14.83	2.37	1.29
3,0 L/ha	15.48	2.49	1.31
4,5 L/ha	16.15	2.46	1,27
Regressão			

C.V. (%) – Coeficiente de Variação.

O resultado deste estudo, pode ser comparado com Retore et al. (2021), que trabalharam com a cultura do Capiaçu, submetido a doses de fertilizante nitrogenado, também não foi constatado efeito significativo, a adubação não influenciou sobre as variáveis de comprimento de folha e diâmetro de colmo.

O mesmo foi visto por Martins (2022), que avaliou a cultura do Capiaçu, submetido a diferentes misturas de adubos minerais e composto de titônia, não foram observadas diferenças estatísticas para as características altura, altura estendida e perfilhamento aos 120 e 180 dias após emergência.

A avaliação de largura de folha, número de folha e número de perfilho na cultura do Capiaçu, analisadas pelo teste F e pela regressão em funções de doses crescente do fertilizante foliar podem ser verificadas na Tabela 4. Mesmo que o nitrogênio é um elemento importante para o porte da planta, que influencia no tamanho de folhas e colmos, no aparecimento e desenvolvimento de perfilhos (WERNER, 1986 citado por REIS, 2021), no presente experimento as variáveis não obtiveram aumento significativo com as doses crescentes do fertilizante foliar.

Tabela 4 – Valores de p>F e teste de comparação de médias para largura de folha, número de folha e número de perfilho por metro aos 144 dias após plantio em BRS Capiaçu em função de doses crescentes de fertilizante foliar.

Teste F	Largura de folha (cm)	Número de folha	Número de perfilho/m
	p>F		
Doses (L)	0.24	0.33	0.21
C.V. %	7.28	15.24	15.31
Testemunha	4.05	16.80	16.12
2,0 L/ha	4.45	14.38	19.37
3,0 L/ha	4.30	15.11	18.12
4,5 L/ha	4.50	17.33	15.50
Regressão			

C.V. (%) – Coeficiente de Variação.

A avaliação de relação folha/colmo, e massa de matéria verde na cultura do Capiaçu, analisadas pelo teste F e pela regressão em funções de doses crescente do fertilizante foliar podem ser verificadas na Tabela 5. As variáveis não obtiveram aumento significativo com as doses crescentes do fertilizante foliar.

Tabela 5 – Valores de p>F e teste de comparação de médias para relação folha/colmo, e massa verde aos 144 DAP em BRS Capiaçu em função de doses crescentes de fertilizante foliar.

Teste F	Relação folha/colmo (m)	Massa Verde (kg)	
	p>F		
Doses (L)	0.15	0.82	
C.V. %	24.24	25.32	
Testemunha	0.71	62.833	
2,0 L/ha	0.48	69.680	
3,0 L/ha	0.73	74.388	
4,5 L/ha	0.71	67.472	
Regressão			

C.V. (%) – Coeficiente de Variação.

Conforme os resultados de Leal et al. (2020), que avaliaram a produção e valor nutritivo de forragem de cultivares de capim elefante em diferentes períodos de rebrotação, não constataram efeito significativo o que pode estar associado às condições climáticas mais favoráveis que promoveu maior desenvolvimento de colmo e variância na relação folha: colmo, o que provocou o não reconhecimento estatístico da diferença pelo teste de média.

A ocorrência de extremos climáticos de temperatura influenciou a condução do experimento e, consequentemente, pode ter influenciado os resultados das variáveis analisadas, mesmo a cultura sendo irrigada e resistente a déficit hídrico a falta de chuva afetou a condução do experimento.

4. CONCLUSÃO

A aplicação do fertilizante foliar não incrementou sobre o desenvolvimento do capim elefante BRS Capiaçu dentro dos padrões experimentais.

5. REFERÊNCIAS BIBLIOGRÁFICAS

BERNARDES, T. F.; SCHMIDT, P.; DANIEL, J. L. P. An overview of silage production and utilization in Brazil. In: INTERNATIONAL SILAGE CONFERENCE, 2015, Piracicaba. **Proceedings...** Piracicaba: ESALQ, p. 623, 2015. EMBRAPA – EMPRESA BRASILEIRA DE PESQUISA AGROPECUARIA. **Capim Elefante - BRS Capiaçu.** 2022. Disponivel em: < https://www.embrapa.br/busca-de-solucoes-tecnologicas/-/produto-servico/3745/capim-elefante---brs-capiacu. Acesso em: 09 mai 2022.

FERREIRA, D. F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia (UFLA), v. 35, p. 1039-1042, 2011.

LEAL, V. N.; MACHADO, R. L.; ARAUJO, L. C.; GODOY, M. M.; LINHARES, A. J. S.; FERREIRA, J. C. Q.; LEOPOLDINO, L. D.; SANTOS, E. A. MIYAGI, E. S. Produção de forragem e valor nutritivo de cultivares de capim-elefante em diferentes épocas de rebrota. **Investigação, Sociedade e Desenvolvimento**, [S. I.], v. 9, n. 11, pág. e41391110025, 2020. DOI: 10.33448/rsd-v9i11.10025. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10025>. Acesso em: 26 nov. 2022.

LIMA, L. A. C. Acúmulo de macronutrientes no capim-elefante cv. Roxo em diferentes idades e épocas de crescimento. 2017. 32 f. Trabalho de Conclusão de Curso (Graduação em Agronomia) – Universidade Federal do Ceará, Centro De Ciências Agrárias, Departamento De Zootecnia, Fortaleza, 2017.

MARTINS, A. C. Estabelecimento de Capim Elefante com composto de *Tihonia diversofolia* (HEMSL.) A. GRAY. 2022. 43 f. Trabalho de Pós-Graduação em Zootecnia (Graduação em Zootecnia) – Universidade Federal dos Vales Jequitinhonha e Mucuri, Diamantina, 2022.

MORAIS, E. G. Marchas de crescimento e de acúmulo de nutrientes do capim-elefante. 2021. 50 f. Dissertação (Mestrado em Manejo do Solo e Água) - Universidade Federal Rural do Semi-árido, Mossoró - RN, 2021.

OLIVEIRA, J. B. de; CAMARGO, M. N.; ROSSI, M.; CALDERANO FILHO, B. **Mapa pedológico do Estado de São Paulo:** legenda expandida. Campinas: Instituto Agronômico; Rio de Janeiro: Embrapa Solos, 1999. 64p.

PAULA, P. R. P.; JUNIOR, A. P. N.; SOUZA, W. L., ABREU, M. J. I.; TEIXEIRA, R. M. A.; CAPPELLE, E. R.; TAVARES, V. B. Composição bromatológica da silagem de capim-elefante BRS Capiaçu com inclusão fubá e milho. **Pubvet**, Maringá- PR, v. 14, n. 10, p. a680, 2020. 10.31533/pubvet.v14n10a682.1-11

PEREIRA, A. V.; LEDO, F. J. S.; MORENZ, M. J. F.; LEITE, J. L.B.; SANTOS, A. M. B.; MARTINS, C. E.; MACHADO, J. C. BRS Capiaçu: cultivar de capim-elefante de alto rendimento para produção de silagem. Juiz de Fora – MG: Embrapa Gado de Leite, 2016, 6 p. (Comunicado Técnico, 79).

PRIMO, A. O. A.; LOPES, A. B.; DIAS, G. F. G.; LEITE, J. E. S.; PAULA, S. **Produção de silagem utilizando o capim-elefante BRS Capiaçu** (*Pennisetum purpureum* **Schum**). 2021. 15 p. Trabalho de conclusão de curso (Curso Técnico em Agropecuária). Centro Paula Souza, Escola Técnica Benedito Storani. Jundiaí- SP, 2021.

RAIJ, B. van; CANTARELLA, H.; QUAGGIO, J.A.; FURLANI, A.M.C. (Ed.). Recomendações de adubação e calagem para o Estado de São Paulo 2.ed. rev. e atual. Campinas: Instituto Agronômico/Fundação IAC, 1997. 285p. (Boletim Técnico, 100).

REIS, L. I. P. Adubação nitrogenada foliar sobre a produção de pastagens: revisão de literatura. 2021. 30f. Monografia (Graduação em Zootecnia). Universidade Federal do Tocantins, Câmpus Universitário de Araguaína, Araguaína – TO, 2021.

RETORE, M.; ALVES, J. P.; ORRICO, M. A. P.; GALEANO, J. E.J. Manejo do capim BRS Capiaçu para aliar produtividade à qualidade. Dourado- MS: Embrapa, 2021, 9 p. (Comunicado Técnico, 263).

SILVA, D. R. G.; COSTA, K. A. P.; FAQUIM, V.; OLIVEIRA, I. P; BERNARDES, T. F. Doses e fontes de nitrogênio na recuperação das características estruturais e produtivas do capim-marandu. **Revista Ciência Agronômica**, Fortaleza- CE, v. 44, n. 1, p. 184-191, 2013.