DETERMINAÇÃO DOS COMPONENTES DO ÓLEO ESSENCIAL DE LIMÃO SICILIANO POR CROMATOGRAFIA

AUTORES

COSTA, Lucas dos Santos

Discente do Curso de Engenharia de Alimentos- UNILAGO

BUENO, Silvia Messias

Docente do Curso de Engenharia de Alimentos- UNILAGO

RESUMO

O Óleo Essencial de Limão Siciliano é empregado nas indústrias alimentícias, farmacêuticas, e de produtos de limpeza, para dar sabor a bebidas, produtos de padaria e confeitaria, água mineral, sorvetes, medicamentos, aromaterapia, cosméticos como sabonetes, perfumes e solventes de acordo com as características predominantes dos compostos presente em sua composição. Esse trabalho tem como foco determinar os principais compostos mais abundantes no óleo essencial de limão siciliano, extraído a frio pelo processo de centrifugação, através da cromatografia gasosa e a confirmação desses compostos pela cromatografia gasosa acoplada espectrômetro de massas. O estudo em questão mostra a predominância de terpenos como o D'Limoneno presente na composição, e outros compostos importantes para o desenvolvimento de fragrâncias como os aldeídos Neral e Geranial e Sesquiterpenos como Bisaboleno.

PALAVRAS - CHAVE

Óleo Essencial, Cromatografia, Limão Siciliano

1. INTRODUÇÃO

A produção comercial de limão iniciou-se na Itália e, por muitos anos, foi umas das principais produtoras mundiais. No final da década de 1970, o Departamento de Agricultura dos Estados Unidos publicou uma lista contendo mais de 60 países produtores desta espécie. Entre estes, Estados Unidos, Itália, Argentina, Espanha e Turquia representavam mais de 60% da produção mundial (PANCCIONI, 2015).

No Brasil, em 2006, a produção de limão teve valor de produção aproximadamente de R\$ 372 milhões ou seja, uma cultura que antes não era considerada como negócio lucrativo, hoje é fonte de renda de muitos produtores rurais. A quantidade de limão exportada pelo Brasil no período 1998 a 2007 cresceu 2.431%, atingindo a marca de 58.250 toneladas. No ranking de exportações brasileiras de frutas em 2007, quanto ao valor de exportação, o limão ficou em sexto lugar atrás de uva, melão, manga, maçã e banana (IEA, 2008).

Quando o fruto é pressionado durante a extração e sua casca é arranhada pelos copos da extratora as glândulas esfericamente formadas que se encontram na casca, são raspadas e rompidas pela superfície rugosa do interior dos copos das extratoras, liberando um óleo que é arrastado por um spray de água, formando uma emulsão de água-óleo. Filtra-se a emulsão para a retenção de fragmentos maiores de casca e menores denominados bagacilhos. Finalmente direciona-se ao processo de separação nas centrífugas, que se divide em três etapas: Concentração (5000RPM), Clarificação e Polimento (entre 6000 a 7000 RPM) (YAMANAKA, 2005).

O Óleo essencial tem maior aplicação nas indústrias alimentícias e farmacêutica. Podem ser usados para dar sabor a bebidas, produtos para padaria e confeitaria, água mineral, sorvetes e outros alimentos, e na fabricação de medicamentos e cosméticos, como sabonetes e perfumes. Há também uso como agentes mascaradores em muitos alimentos, cosméticos e produtos farmacêuticos, incluindo aromaterapia. Também utilizado para mascarar o gosto desagradável de medicamentos. São usadas ainda pelas indústrias de produtos de limpeza (TITA, 2011).

Nos óleos essenciais de frutas cítricas, os hidrocarbonetos constituem a fração majoritária. Entre eles o Limoneno é o mais abundante. A Tabela 1 mostra os principais compostos do óleo essencial, bem como a classe química a qual pertence (AMADOR, 1992).

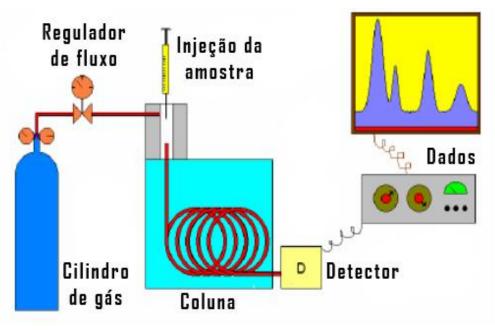

A cromatografia gasosa é muito utilizada em diversas áreas dentre elas, nas indústrias alimentícias e farmacêutica para a extração de óleo essencial, por ser muito versátil e separar e quantificar diversas substâncias, além de ser capaz de identificar algumas delas, podendo também ser associada a espectrofotômetria de Massa proporcionando melhores resultados. A cromatografia gasosa é uma técnica para separação e análise de misturas de substâncias voláteis que possuem ponto de fusão até 300°C, desde que sejam termoestáveis, através da introdução do material gasoso na fase estacionária que pode ser sólida ou líquida pouco volátil e posteriormente analise de cada substancia separada pela coluna cromatográfica (ISSUFO, 2012).

Tabela 1- Principais compostos dos óleos essenciais cítricos.

COMPONENTES	CLASSE QUÍMICA				
α-Thujeno					
α-Pineno					
β-Pineno					
Campheno	Hidrorcarbonetos Terpênicos				
Sabineno	Tharorealbonetos Terperheos				
Mirceno					
Limoneno					
δ-Terpineno					
Citronelal					
Neral					
Geranial	Aldeídos				
Octanal	Aldeldes				
Nonanal					
Decanal					
δ-Terpineol					
Linalol	Álcoois				
Citronelol	7110013				
Geraniol					
Acetato de Nerila	Ésteres				
Acetato de Geranila	L316163				
β-Bisaboleno					
β-Cariophyleno	Sesquiterpenos				
α-Bergamoteno					

Fonte: AMADOR, 1992.

Figura 1- Esquema do Processo de Croamtografia Gasosa.

Fonte: ISSUFO, 2009.

O trabalho tem como objetivo determinar os principais compostos presentes no Óleo Essencial de Limão Siciliano através de métodos analíticos de alta resolução como a Cromatografia Gasosa e Cromatografia Gasosa acoplada com Espectro de Massas.

2. MATERIAIS E MÉTODOS

Os materias utilizados para esse experimento foram:

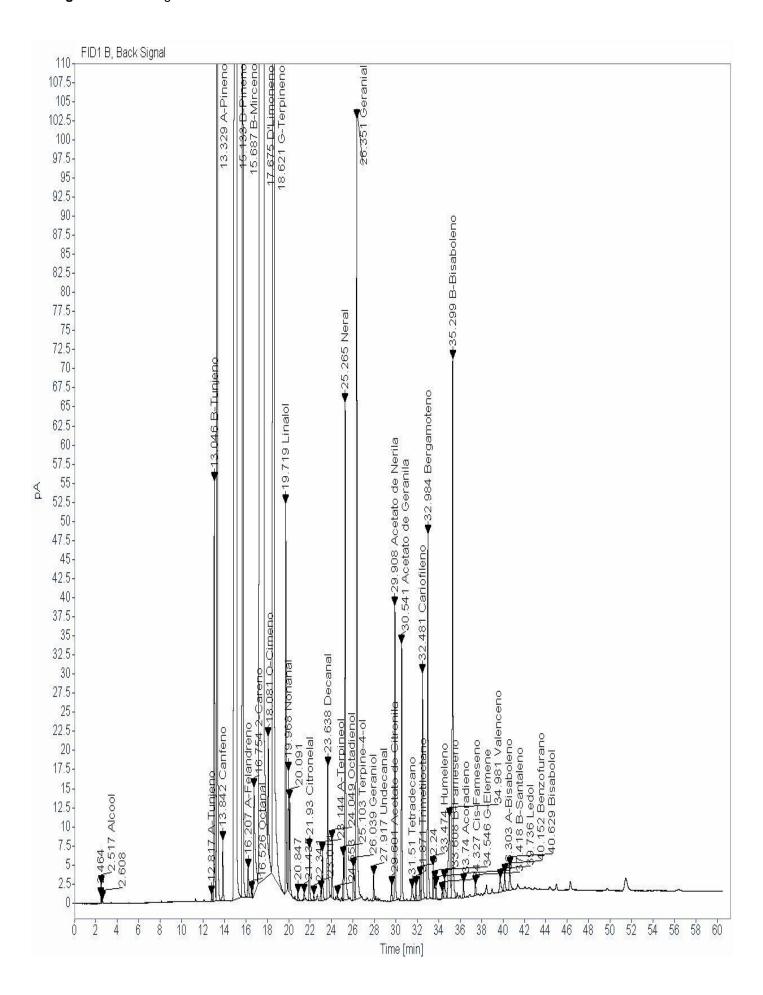
- Acetonitrila;
- Bequer:
- Coluna HP-1;
- Coluna HP-5;
- Conta-Gotas:
- Cromatografo Gasoso Agilent 7820A;
- Cromatografo Gasoso Agilent 7890B;
- Espectro de Massas 5977B;
- Filtro para Seringa de 15mm e 0,20μm;
- Óleo Essencial de Limão Siciliano:
- Seringa Hipodérmica, Estéril e Atoxica;
- Seringa 10µL, para Cromatografo Gasoso (Agilent);
- Vial;

Para injeção do Óleo Essencial de Limão Siciliano no Cromatógrafo Gasoso, filtrou-se o óleo com filtro seringa 0,20µm para eliminação de cera e seguiram-se as seguintes configurações cromatográficas:

Quadro 1- Condições Cromatograficas para o Cromatografo de Gases.

Parâmetro	Valor / Atributo			
Temperatura da Coluna	40°C			
Temperatura de Injeção	200°C			
Modo	Split (1:100)			
Pressão	4.8 psi			
Fluxo Total	76.379 mL/min			
Fluxo da Coluna	0.76 mL/min			
Velocidade Linear	23.354 cm/s			
Rampa de Aquecimento	Manter 40°C por 3 min; Aumentar 4°C/min; Atingir 190°C e manter por 20 mim			
Tempo de Corrida	60 min			
Coluna Cromatográfica	HP-1			

Para injeção do Óleo Essencial de Limão Siciliano no Cromatógrafo Gasoso acoplado com Espectrômetro de Massas, filtrou-se o óleo com filtro seringa 0,20µm para eliminação de cera, dilui-se com acetonitrila na proporção de 8mg/mL, e seguiram-se as seguintes configurações cromatográficas:


Quadro 2- Condições Cromatograficas para o Cromatografo de Gases acoplado Espetômetro de Massas.

Parâmetro	Valor / Atributo			
Temperatura da Coluna	40°C			
Temperatura de Injeção	250°C			
Modo	Split (1:100)			
Pressão	87.3 kPa			
Fluxo Total	160.9 mL/min			
Fluxo da Coluna	1.56 mL/min			
Velocidade Linear	45 cm/s			
Rampa de Aquecimento	Manter 40°C por 3 min; Aumentar 2°C/min; Atingir 180°C e manter por 10 mim			
Tempo de Corrida	83 min			
Vazão de Purga	3 mL/mim			
Coluna Cromatográfica	HP-5			
Espctômetro de Massas				
Temp. Fonte de Ionização	150°C			
Ionização	Ionização Eletrônica			
Temperatura da Interface	250°C			
Corte do Solvente	2 min			
Aquisição	Scan			
Enventime	0.5 s			
Velocidade do Scan	1250 uma/seg			
Faixa de Massa Início	m/z=40			
Faixa de Massa Fim	m/z=600			

3. RESULTADOS E DISCUSSÃO

O método utilizado foi o de Normalização, onde a área de cada pico é obtida de uma série de injeções de réplicas de uma mistura contendo quantidades iguais ou conhecidas de todos os componentes. O D'Limoneno, por ser mais abundante foi escolhido como referência, e as respostas relativas dos outros componentes, foram determinadas pela razão entre as suas áreas e a do componente de referencia (D'Limoneno), escolheu-se esse método, por ser economicamente mais viável em comparação aos outros métodos como Padrão Interno e Padrão Externo, e também por consequentemente, a utilização do Espectrômetro de Massas e Biblioteca NIST do Software de quantificação Agilent MassHunter Qualitative Analysis. Segue abaixo resultados obtidos através dos Cromatogramas:

Figura 2. Cromatograma da amostra de Óleo Essencial de Limão Siciliano

RT					
[min] Type Width [min]	Area	Height	Area% N	% Name	
2.517 VV R 0.0351	5.8257	2.4230	0.0090	Etanol	
2.608 VB E 0.0225	0.3941	0.2779	0.0006		
12.817 BV 0.0690	3.9206	0.8633	0.0061	A-Tunjeno	
13.046 VV 0.0712 25	50.6489	54.9937	0.3881	B-Tunjeno	
13.329 VB 0.0693 118	36.2177	264.7286	1.8367	A-Pineno	
13.842 BB 0.0728	38.5640	7.9192	0.0597	Canfeno	
15.133 BB 0.1020 908	38.2910 1	218.2002	14.0722	B-Pineno	
15.687 BB 0.0747 102	24.8408	207.3380	1.5868	B-Mirceno	
16.207 BB 0.0942 2	23.9427	3.8688	0.0371	A-Felandreno	
16.526 BB 0.0809	5.2905	1.0304	0.0082	Octanal	
16.754 BB 0.1545 14	49.2769	14.1034	0.2311	2-Careno	
17.675 BV R 0.1802 4393	30.5273 2	976.1013	8.0213	D'Limoneno	
18.081 VB E 0.0748	70.2379	14.6913	0.1088	O-Cimeno	
18.621 BB 0.0943 57	17.0332	886.0650	8.8522	G-Terpineno	
19.719 BB 0.0700 23	31.2499	50.8924	0.3581	Linalol	
19.968 BV 0.0706	70.8006	15.6891	0.1096	Nonanal	
21.930 BB 0.0758	34.5005	6.9583	0.0534	Citronelal	
23.144 VB 0.0887	37.7521	6.4147	0.0585	A-Terpineol	
23.638 BB 0.0946 10	07.9256	17.3416	0.1671	Decanal	
24.049 BB 0.0742	36.5012	7.7081	0.0565	Octadienol	
25.103 BV E 0.0763	28.0553	5.7150	0.0434	Terpine-4-ol	
25.265 VB R 0.0848 36	61.8551	65.1195	0.5603	Neral	
26.039 BV 0.0864 2	25.0499	4.4024	0.0388	Geraniol	
26.351 VB 0.0852 5	70.9192	102.2248	0.8840	Geranial	
27.917 BB 0.0752	16.5189	3.3670	0.0256	Undecanal Acetato de	
29.601 BB 0.0870	11.4132	2.0492	0.0177	Citronila	
29.908 BB 0.0745 18	36.7052	38.5569	0.2891 A	cetato de Nerila Acetato de	
30.541 BB 0.0774 16	68.5465	33.6782	0.2610	Geranila	
31.510 BV 0.1478	19.5641	1.7581	0.0303	Tetradecano	
31.871 VB 0.0753	9.9179	2.0543	0.0154	Trimetiloctano	
32.481 VB 0.0854 16	63.4000	29.5972	0.2530	Cariofileno	
32.984 BB 0.0804 25	51.5852	47.8288	0.3896	Bergamoteno	
33.474 BV 0.0755	21.5453	4.3736	0.0334	Humeleno	
33.608 VV 0.0963	15.9465	2.5026	0.0247	B-Fameseno	
33.740 VB 0.0838	9.6347	1.7339	0.0149	Acoradieno	
34.327 BB 0.0773	4.6707	0.9503	0.0072	Cis-Fameseno	
34.546 BV 0.1034	17.8550	2.4404	0.0276	G-Elemene	

Figura 3. Espectro do Terpeno encontrado no óleo essencial:

Name: D-Limonene Formula: C₁₀H₁₆

MW: 136 Exact Mass: 136.1252 CAS#: 5989-27-5 NIST#: 365767 ID#: 8354 DB: replib

Other DBs: Fine, TSCA, RTECS, HODOC, EINECS, IRDB

Contributor: J.V. Goodpaster, Purdue University, Indianapolis USA

Related CAS#: 7705-13-7; 95327-98-3

InChlKey: XMGQYMWWDOXHJM-UHFFFAOYSA-N Non-stereo

10 largest peaks:

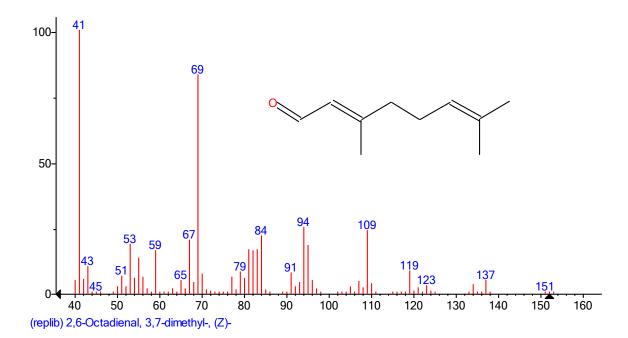
68999 | 93783 | 67746 | 79391 | 94300 |

Figura 4. Espectro do Aldeído encontrado no óleo essencial

<u>Name:</u> Neral, β-Citral <u>Formula:</u> C₁₀H₁₆O

MW: 152 Exact Mass: 152.120115 CAS#: 106-26-3 NIST#: 290609 ID#: 1162 DB: replib

Other DBs: TSCA, HODOC, EINECS


<u>Contributor:</u> NIST Mass Spectrometry Data Center, 1998.

InChIKey: WTEVQBCEXWBHNA-JXMROGBWSA-N Non-stereo

10 largest peaks:

41999 | 69829 | 39309 | 94253 | 109 237 |

84220 | 67201 | 53188 | 95184 | 83168 |

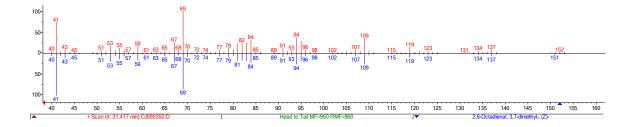
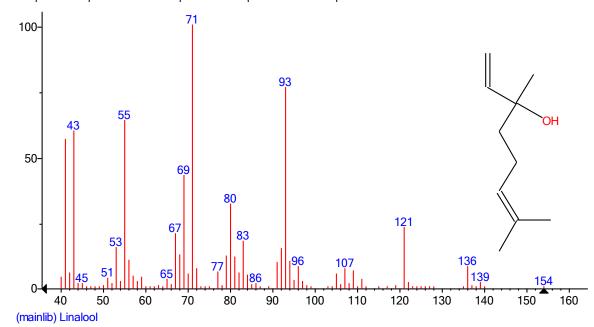


Figura 5. Espectro do Álcool encontrado no óleo essencial

Name: Linalool Formula: C₁₀H₁₈O

MW: 154 Exact Mass: 154.135765 CAS#: 78-70-6 NIST#: 352637 ID#: 39161 DB: mainlib Other DBs: Fine, TSCA, RTECS, NIH, EINECS, IRDB


Contributor: NIST Mass Spectrometry Data Center

Related CAS#: 11024-20-7; 22564-99-4

InChlKey: CDOSHBSSFJOMGT-UHFFFAOYSA-N Non-stereo

10 largest peaks:

71999 | 93760 | 55637 | 43598 | 41564 | 69426 | 80321 | 121 232 | 67206 | 39 179 |

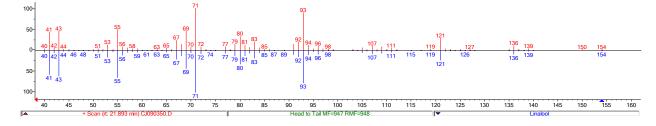
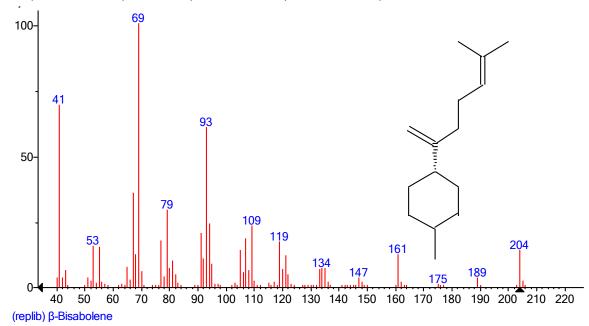
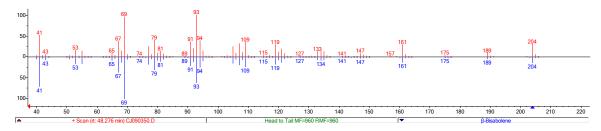


Figura 6. Espectro do Sesquiterpeno encontrado no óleo essencial

Name: β-Bisabolene Formula: C₁₅H₂₄

MW: 204 Exact Mass: 204.1878 CAS#: 495-61-4 NIST#: 412943 ID#: 8537 DB: replib


Other DBs: HODOC


Contributor: NIST Mass Spectrometry Data Center

InChIKey: XZRVRYFILCSYSP-OAHLLOKOSA-N Non-stereo

10 largest peaks:

69999 | 41689 | 93604 | 67355 | 79291 | 94237 | 109 | 230 | 91 201 | 107 | 184 | 77 | 174 |

A amostra de óleo essecial analisada, forneceu resultados satisfatórios e suficientes para se traçar e identificar o perfil cromatografico e de concentração desses compostos através da % de área.

Os componentes identificados correspondem a 96% de Hidrocarbonetos Terpênicos, 2% de Aldeídos, 0,5% de Alcoois e 1% de Sesquiterpenos.

4. CONCLUSÃO

Através dos resultados apresentados concluiu-se que a análise por Cromatografia Gasosa e Cromatografia Gasosa acoplada Espectrometro de Massas, mostraram a possibilidade de classificar e identificar todos os compostos presentes no óleo essencial de limão siciliano, onde foram encontrados hidrocarbonetos Terpênicos, aldeidos, alcoois e sesquiterpenos. Há a predominância de terpenos como o D'Limoneno presente na composição, e outros compostos importantes para o desenvolvimento de fragrâncias como os aldeídos Neral e Geranial e Sesquiterpenos como Bisaboleno.

5. REFERÊNCIAS BIBLIOGRÁFICAS

AMADOR, J. R.; Estudo cromatográfico dos Principais componentes de Óleos Essenciais de Frutas Cítricas. USP. Departamento de Química e Física Molecular.

INSTITUTO DE ECONOMIA AGRÍCOLA (IEA); **O Mercado de Lima Ácida Tahiti**. Disponível em: http://www.iea.sp.gov.br/out/LerTexto.php?codTexto=9661. Acesso em: 10/09/2017.

ISSUFO, C.H.N.; **Introdução à cromatografia**. Métodos Cromatográficos. Bio Medicina Brasil. Outubro 2012. Disponível em: http://www.biomedicinabrasil.com/2012/10/metodos-cromatograficos.html. Acesso em: 20/09/2017.

PANCCIONI, T. M.; Caracterização dos sintomas de HLB e da infecção por *Candidatus* Liberibacter asiaticus em limão verdadeiro. FUNDECITRUS, 2015.

TITA, M. L.; Identificação dos Componentes dos Óleos Essenciaise Proposição de Procedimentos Industriais para a Obtenção de Produtos Diferenciados. UFSCAR, 2011.

YAMANAKA, H. T.; **Sucos Cítricos.** São Paulo: CETESB 2005. Disponível em: http://www.cetesb.sp.gov.br/Tecnologia/producao_limpa/documentos/sucos_citricos. Acesso em: 20/09/2017.